
Ceph: A Scalable,
High-Performance

Distributed File System

Scott A. Brandt
Associate Director

Storage Systems Research Center
University of California, Santa Cruz

Who am I?
Associate Professor and Director
of Graduate Studies, Computer
Science, UC Santa Cruz
Associate Director, UCSC
Storage Systems Research Center
(SSRC) and UCSC/Los Alamos
Institute for Scalable Scientific Data
Management (ISSDM)
Director, UCSC Real-Time
Systems Laboratory
Background

1999 Ph.D. CS, Colorado
1987/1993 B. Math/M.S. CS,
Minnesota
1982–1994 Programmer/Research
Scientist/VP CPT, B-Tree,
Honeywell SRC, Theseus
Research, Alliant TechSystems
RTS, Secure Computing

Associate Professor and Director
of Graduate Studies, Computer
Science, UC Santa Cruz
Associate Director, UCSC
Storage Systems Research Center
(SSRC) and UCSC/Los Alamos
Institute for Scalable Scientific Data
Management (ISSDM)
Director, UCSC Real-Time
Systems Laboratory
Background

1999 Ph.D. CS, Colorado
1987/1993 B. Math/M.S. CS,
Minnesota
1982–1994 Programmer/Research
Scientist/VP CPT, B-Tree,
Honeywell SRC, Theseus
Research, Alliant TechSystems
RTS, Secure Computing

Current Research
Storage Systems

High-performance peta-scale
storage
New storage technologies
Enhanced metadata
management

Real-Time Systems
Integrated hard real-time, soft
real-time, and non-real-time
processing

Past Research
Real-time image processing
systems
Secure operating systems
Asynchronous circuits and
parallel programming languages

Current Research
Storage Systems

High-performance peta-scale
storage
New storage technologies
Enhanced metadata
management

Real-Time Systems
Integrated hard real-time, soft
real-time, and non-real-time
processing

Past Research
Real-time image processing
systems
Secure operating systems
Asynchronous circuits and
parallel programming languages

Peta-scale Data Storage: Our
Goals
Performance

20 PB storage system
1-10,000 hard drives

1 TB/sec aggregate
throughput

1-10,000 hard drives
pumping out data as fast as
they can

Billions of files
Bytes to terabytes
1-100,000+ files/directory

Very low-latency metadata

Usage
POSIX-like interface

Standard file/directory
semantics

High-performance direct
access from 100,000+
clients, to

Different directories, same
directory, same file

Mid-performance local
access by visualization
workstations w/QoS
Wide-area general-purpose
access

Peta-scale Data Storage
Challenges

Massive scale of everything
Huge files, directories, data
transfers, etc.

Managing the data
Coordinating the activity of
thousands of disks

Managing the metadata
Unified directory hierarchy

Workload
Scientific and general
purpose workloads

Dynamic capacity
Must be able to grow (or
shrink) dynamically

Reliability
Thousands of hard drives
⇒ frequent failures

Security
Authentication, encryption,
etc.

Performance
Hot spot avoidance
Many possible bottlenecks

Quality of Service
Guaranteed performance
with mixed workloads

Usability
Finding anything among all
of that data

File server

File server

File server

Independent File
Servers (1–10)

Clients
(1,000s)

Traditional Storage System
Architecture

Traditional Storage System
Architecture

Limitations:
• Metadata performance
• Data performance
• Storage allocation
• Workload balancing
• …
X Performance at scale

Limitations:
• Metadata performance
• Data performance
• Storage allocation
• Workload balancing
• …
X Performance at scale

Block I/O Manager

Object Interface

System Call Interface

File System
Client Component

File System
Storage Component

Applications
Applications

System Call Interface

Logical Block Interface

Block I/O Manager

File System

Traditional Storage Object-based
Storage�

Operating
System

Hard
Drive

Operating
System

Object-
based
Storage
Device
(OSD)

First Key Idea: Object-based
Storage

Block I/O Manager

Object Interface

System Call Interface

File System
Client Component

File System
Data Manager

Applications

Operating
System

Object-
based
Storage
Device
(OSD)

Metadata Interface

File System
Metadata ManagerMetadata

Server
(MDS)

Metadata
requests

Data
requests

Metadata
storage

Metadata storage
and/or system
management

Second Key Idea: Decoupled
Data and Metadata

Peta-scale Object-based
Storage System Architecture

Cluster of Metadata
Servers (1–10)

Clients
(10,000+)

Object-
based
Storage
Devices (1–
10,000)

Metadata Cluster Management
1. Lazy Hybrid
2. Dynamic Subtree Partitioning

Metadata Cluster Management
1. Lazy Hybrid
2. Dynamic Subtree Partitioning

Client SW
1. Interface
2. Cache Mgmt
3. Workload

Client SW
1. Interface
2. Cache Mgmt
3. Workload

Object Storage
1. OBFS
2. EBOFS

Object Storage
1. OBFS
2. EBOFS

Storage System
1. Data Distribution
2. Reliability
3. Quality of Service
4. Security
5. In-flight data
…

Storage System
1. Data Distribution
2. Reliability
3. Quality of Service
4. Security
5. In-flight data
…

Our Research

Ceph Goals
Reliable, high-performance distributed file system
with unprecedented scalability

POSIX-like interface
Petabytes to exabytes, multi-terabyte files, billions of files
Hundreds of thousands of clients simultaneously accessing
same files or directories

Object-based storage promises scalability, but has
largely failed to deliver due to continued reliance on
traditional storage systems principles

Inode tables
Block (or object) list allocation metadata
Unintelligent storage devices

Four Key Design Principles

1. Separation of data and metadata

2. Pseudo-random data placement

3. Robust distributed object storage

4. Dynamic distributed metadata
management

Overview
Client operation

System overview, extending POSIX
CRUSH – pseudo-random data placement
DSP – distributed metadata

Traffic management, storage
RADOS – reliable, distributed object storage

Intelligent OSDs, specialized local object storage
EBOFS – high-performance object storage
Evaluation

Client Operation
Clients expose Ceph interface to a process or host

Near-POSIX: we extend the interface and selectively relax
consistency semantics
Can link to a single process or mount (via FUSE)

Decoupled data and metadata operations

Metadata
storage

File I/O

Metadata Cluster

Object Storage Cluster

clientbash

Linux kernel
fusevfs

libfusels

…

myproc

client

Clients

Metadata operations

Client Operation (cont.)
Client sends open request to MDS

Receives a capability, granting client permission to read
or write to objects comprising file
Also receives inode number, striping information

Client reads/writes directly to OSDs
Maps file contents onto objects based on striping strategy
Generates object names using inode and object number
Calculates object locations using CRUSH function

…
…

… … … …

CRUSH(pgid) (osd1, osd2)

OSDs
(grouped by
failure domain)

File

Objects
hash(oid) & mask pgid

PGs

(ino,ono) oid

Extending POSIX—
Lazy I/O

Mixed readers/writer or multiple writers shifts clients
to synchronous I/O mode

Updates serialized at OSDs for proper semantics
Increases latency—can kill performance!

Ceph implements subset of proposed HPC I/O
extension

O_LAZY option for open() relaxes consistency when
applications opt to manage it themselves
lazyio_propogate(), lazyio_synchronize() allow application
to force updates to be visible to others

Retains simplicity and enables high-performance
without breaking consistency system-wide (as NFS3
does)

Extending POSIX—
readdir() + stat()

Common, and slow—typically involves many
lookups in inode table
Ceph MDS embeds inodes in directories

A single OSD access fetches directory contents and inodes
into MDS cache
A client readdir() retrieves directory entries and inode
contents with a single request to an MDS

readdirplus() system call provides applications with
appropriate semantics

Or, Ceph can relax consistency for a stat() immediately
following a readdir()

CRUSH—
Robust Data Distribution

Controlled Replication Under Scalable
Hashing

Pseudo-random replica distribution algorithm
No allocation metadata (no lookups in data path!)
Efficiently reorganizes data when the cluster
changes due to addition or removal of storage
Enforces flexible constraints on replica distribution
to enhance reliability – failure domains

CRUSH is a function

CRUSH maps an integer identifier x to an ordered list of storage targets
No lookup tables
No block or object lists associated with each file

x is just an integer – we use psid ← hash(object_id) & mak
Pseudo-random – looks random, but deterministic!

Implicit inputs include
A hierarchical cluster map describing available storage devices
A placement rule describing any constraints on object placement

How many replicas
Separation of replicas across failure domains

Everybody has the cluster map and placement rules
Calculate object locations instead of looking them up

CRUSH(x) → (osd4, osd21, osd13)

CRUSH maximizes reliability,
minimizes data migration

Cluster map represents OSDs as a hierarchy that
reflects arbitrary physical or logical structure

Shelves, cabinets, rows, rooms, buildings
Power supplies, networks, racks
Performance, reliability, …

Placement rules define replica placement behavior
e.g. 3 replicas, in same row, but each in a different cabinet

CRUSH mapping is stable
When disks are added, removed, or fail, CRUSH minimizes
the amount of data that migrates to maintain balance

DSP: Dynamic Distributed
Metadata Management

Dynamic Subtree Partitioning
Workload Partitioning

Distribute MDS workload
Traffic Management

Coping with hot spots
Directing client traffic

Metadata Storage
Fast commits and efficient reads
Data safety and MDS failure recovery

Traditional Partitioning

Coarse distribution (static subtree partitioning)
hierarchical partition preserves locality
high management overhead: distribution becomes imbalanced as
file system, workload change

Finer distribution (hash-based partitioning)
probabilistically less vulnerable to “hot spots,” workload change
destroys locality (ignores underlying hierarchical structure)

Directory Hashing
Hash on directory
portion of path only

Coarse partition Fine partition

Static Subtree Partitioning
Portions of file hierarchy
are statically assigned
to MDS nodes

(NFS, AFS, etc.)

File Hashing
Metadata distributed
based on hash of full path
(or inode #)

Ceph’s Dynamic Partitioning

Distribute subtrees of directory hierarchy
Somewhat coarse distribution of variably-sized subtrees
Preserve locality within branches of the directory hierarchy

Intelligently manage distribution based on workload demands
Keep MDS cluster load balanced
Actively repartition as workload and file system change instead of
relying on a (fixed) probabilistic distribution

Coarse partition

Static Subtree Directory Hashing File HashingDynamic Subtree Partitioning

Fine partition

Metadata Partition

Subtrees are dynamically redistributed to balance workload
Granularity ranges from large subtrees to individual directories
Coarse partition preserves locality, improves efficiency

Ceph adapts to hotspots in workload
Heavily read directories are replicated on multiple MDSs
Heavily written directories are hashed across the entire cluster

Root

MDS 0 MDS 4MDS 1 MDS 2 MDS 3

Busy directory hashed across many MDS’s

MDS 0

MDS 1

MDS 2

MDS 3

MDS 4

Metadata Storage—
Two Tiers

Short-term storage in metadata journal
Immediate commits require high sequential write bandwidth
Very large journal with extremely lazy commits
Absorbs short-lived or repetitive metadata updates
Used for recovery after MDS failures

Long-term storage
On-disk layout optimized for future read access
Inodes embedded in directories—no large, awkward inode tables

MDS 3MDS 2MDS 1

MDS
Cache

Long-term Storage
(Shared Access)Clients

Short-term
Log or
Journal

Writes

Reads

Writes

Reads

RADOS—Reliable Autonomic
Distributed Object Store

OSDs self-managing, distribute
replication
failure detection (refereed by third party)
failure recovery
data migration

Single object namespace
Individual OSDs store different objects, but
Cluster collectively acts and appears as a single,
reliable, self-managing distributed store

RADOS –
Replication

Clients send reads, writes to first OSD
Reads are satisfied locally

or delegated to replicas for fine-grained load balancing

Writes are forwarded to replica sites
Ack’ed only after replicas ack
Leverages local OSD interconnect, intelligence

write

ack

Client OSDs

RADOS –
Synchronization vs Safety

Two reasons we write data to the object store
Synchronization – so other clients can see it

Must be fast – maintain consistency and coherency without killing performance
Safety – data on disk survives power failures, etc.

Must be reliable – either assumed, or often because the application asks for it with fsync()
RADOS disassociates write ack and safe replies

Client receives quick ack when write is received by object store and applied to replica
buffer cache(s)
A second safe follows (seconds?) later when data is safe on disk

write

ack

safe

Client OSDsMDS

RADOS –
Failure Detection

OSD Failure detection is distributed
Each OSD monitors a subset of its peers via ping or
heartbeat messages
Piggybacks on existing inter-OSD replication chatter when
possible
Failure reports sent to third party referee (MDS)

Referee confirms failures
Filters out bogus reports, spurious connectivity failures,
partitions, etc.
Distributes new cluster map with new OSD state decrees
Operations pending with newly-failed devices are rerouted

RADOS –
Failure Recovery

OSDs scan their current PGs
Any “stray” data in affected PGs is announced to the PG’s
new primary OSD
Primary collects PG content summaries (object lists) and
distributes to all replica OSDs
Each OSD, armed with “correct” PG contents, will
independently retrieve any object replicas it is missing

Normal workload is mostly unaffected
Recovery proceeds in the background
Updates to non-replicated data currently block while OSDs
replicate underlying objects

EBOFS –
Low-level object storage

Extent/BTree-based Object File System
Extent-based allocation—(start,length) instead of
block lists
Robust generalized BTree storage service

Object onode table
Collections (placement groups)
Free extent lists, indexed by size, position

Attributes – on objects and collections
Safety – efficient copy-on-write for data and
metadata

EBOFS—
Not a typical file-system!

Non-standard transaction semantics (for RADOS)
Atomic compound transactions—data + metadata updates

Multiple writes, attribute or collection membership updates
Asynchronous (“safe”) notification of disk sync

User-space implementation
We define our own interface

not limited by existing (and ill-suited) kernel POSIX
interface, Linux page cache, etc.

Superior performance compared to general-purpose kernel
filesystems (ext3, xfs, etc)

EBOFS –
Emphasis on Safety

Two copies (even and odd) of superblock
Alternating updates
Point to BTrees containing all metadata

Copy-on-write – all writes are to unallocated space
Modified BTree nodes written to unused blocks
Modified data written to unallocated space

Commit cycle every second or so
Dirty object data, BTree data flushed to disk
New superblock written
Asynchronous update commit callbacks triggered
Journaling soon?
Non-blocking—no effect on disk workload

Any power failure returns EBOFS volume to fully consistent state – no
fsck

OSD Performance—
EBOFS vs ext3, XFS, ReiserFS

I/O Size (KB)
4 16 64 256 1024 4096 16384

P
er

−
O

S
D

 T
hr

ou
gh

pu
t (

M
B

/s
ec

)

0

10

20

30

40

50

60

ebofs
ext3
reiserfs
xfsreads

writes

EBOFS writes saturate disk

Reads approach optimal when data is written in large
increments

OSD Performance—
Throughput w/Replication

Little per-OSD impact

Proportional decrease in overall throughput (not seen here)

OSD Performance—
Write Latency w/Replication

Tolerable increase in latency w/replication

Little extra cost for 3+x replication (performed concurrently)

OSD Cluster Scaling—
CRUSH vs careful striping

OSD Cluster Size
2 6 10 14 18 22 26

P
er

−
O

S
D

 T
hr

ou
gh

pu
t

(M
B

/s
ec

)

30

40

50

60

crush (32k PGs)
crush (4k PGs)
hash (32k PGs)
hash (4k PGs)
linear

Higher placement group count reduces statistical variance,
divergence from optimal (write throughput shown)

Metadata Scalability—
Throughput vs. Cluster Size

MDS Cluster Size (nodes)
0 16 32 48 64 80 96 112 128

P
er

−
M

D
S

 T
hr

ou
gh

pu
t (

op
s/

se
c)

0

1000

2000

3000

4000

5000
makedirs

makefiles

openshared

openssh+include

openssh+lib

Over 250,000 metadata ops/second!

Potentially many terabytes/second, petabytes to exabytes!

Metadata Scalability—
Latency vs. Cluster Size

Good latency until saturation

Larger cluster saturates at somewhat lower per-MDS workloads
due to between-MDS communications

Conclusions
Reliable, high-performance storage with
unprecedented scalability

Very soon:
http://sourceforge.net/projects/ceph

Help us build one (or more)!

Future Work
Ceph QoS architecture

Distributed reservations and performance guarantees
Archival storage

Managing data hot spots, idle data
Rich metadata

Our MDS built around 30-year old POSIX file system interface
Next generation file systems will likely diverge from a single
hierarchy

In-flight data management
Better awareness (and exploitation) of data residing in transit or
in client caches
Leverage existing object-based interface and replica
synchronization techniques

Enhanced Interfaces (maybe not us)

Thanks!
Contributors

Sage Weil
Feng Wang, Chris Xin, Lan Xue

Ethan Miller, Carlos Maltzahn, Darrell Long
Supporters

Lawrence Livermore National Laboratory
Los Alamos National Laboratory

Sandia National Laboratory

